Calculation Policy Addition – Years 4-6 Missing number/digit problems: Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Written methods (progressing to 4-digits) Expanded column addition modelled with place value counters, progressing to calculations with 4digit numbers. #### Compact written method Extend to numbers with at least four digits. Children should be able to make the choice of reverting to expanded methods if experiencing any difficulty. Extend to up to two places of decimals (same number of decimals places) and adding several numbers (with different numbers of digits). 72.8 + 54.6 127.4 1 1 Missing number/digit problems: Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Children should practise with increasingly large numbers to aid fluency e.g. 12462 + 2300 = 14762 #### Written methods (progressing to more than 4-digits) As year 4, progressing when understanding of the expanded method is secure, children will move on to the formal columnar method for whole numbers and decimal numbers as an efficient written algorithm. 172.83 + 54.68 227.51 1 1 1 Place value counters can be used alongside the columnar method to develop understanding of addition with decimal numbers. Missing number/digit problems: Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Ex #### Written methods As year 5, progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with columnar method to be secured. Continue calculating with decimals, including those with different numbers of decimal places #### **Problem Solving** Teachers should ensure that pupils have the opportunity to apply their knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen their understanding. ## The National Curriculum in England. ©Crown Copyright 2013 Year 4 objectives ## Statutory requirements Pupils should be taught to: - add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate - estimate and use inverse operations to check answers to a calculation - solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why. ## The National Curriculum in England. ©Crown Copyright 2013 **Year 4 guidance** ### Notes and guidance (non-statutory) Pupils continue to practise both mental methods and columnar addition and subtraction with increasingly large numbers to aid fluency (see English Appendix 1). ## The National Curriculum in England. ©Crown Copyright 2013 Year 5 objectives ### Statutory requirements Pupils should be taught to: - add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) - add and subtract numbers mentally with increasingly large numbers - use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy - solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why. ## The National Curriculum in England. ©Crown Copyright 2013 Year 5 guidance ### Notes and guidance (non-statutory) Pupils practise using the formal written methods of columnar addition and subtraction with increasingly large numbers to aid fluency (see Mathematics Appendix 1). They practise mental calculations with increasingly large numbers to aid fluency (for example, $12\ 462 - 2300 = 10\ 162$). ## The National Curriculum in England. ©Crown Copyright 2013 ### **Year 6 objectives** #### Statutory requirements Pupils should be taught to: - multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication - divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context - divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context - perform mental calculations, including with mixed operations and large numbers - identify common factors, common multiples and prime numbers - use their knowledge of the order of operations to carry out calculations involving the four operations - solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why 135 #### **Mathematics** #### Statutory requirements - solve problems involving addition, subtraction, multiplication and division - use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy. ## The National Curriculum in England. ©Crown Copyright 2013 Year 6 guidance ### Notes and guidance (non-statutory) Pupils practise addition, subtraction, multiplication and division for larger numbers, using the formal written methods of columnar addition and subtraction, short and long multiplication, and short and long division (see Mathematics Appendix 1). They undertake mental calculations with increasingly large numbers and more complex calculations. Pupils continue to use all the multiplication tables to calculate mathematical statements in order to maintain their fluency. Pupils round answers to a specified degree of accuracy, for example, to the nearest 10, 20, 50 etc., but not to a specified number of significant figures. Pupils explore the order of operations using brackets; for example, $2 + 1 \times 3 = 5$ and $(2 + 1) \times 3 = 9$. Common factors can be related to finding equivalent fractions.